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Abstract
This paper studies Distributionally Robust Optimization (DRO), a fundamental framework for

enhancing the robustness and generalization of statistical learning and optimization. An effective
ambiguity set for DRO must involve distributions that remain consistent to the nominal distribution
while being diverse enough to account for a variety of potential scenarios. Moreover, it should
lead to tractable DRO solutions. To this end, we proposes a diffusion-based ambiguity set design
that captures various adversarial distributions beyond the nominal support space while maintain-
ing consistency with the nominal distribution. Building on this ambiguity modeling, we propose
Diffusion-based DRO (D-DRO), a tractable DRO algorithm that solves the inner maximization
over the parameterized diffusion model space. We formally establish the stationary convergence
performance of D-DRO and empirically demonstrate its superior Out-of-Distribution (OOD) gen-
eralization performance in a ML prediction task.
Keywords: Distributionally Robust Optimization, Diffusion Models, OOD Generalization

1. Introduction

Distributionally Robust Optimization (DRO) is a fundamental framework for enhancing the robust-
ness of statistical learning and optimization problems, particularly under Out-of-Distribution (OOD)
scenarios [2, 19]. DRO formulates a minimax optimization problem, where the inner maximization
identifies the worst-case distribution within an ambiguity set, and the outer minimization optimizes
the decision variable against this worst-case scenario [3, 4, 16, 21, 29]. Unlike non-probabilistic
robust optimization, DRO leverages probabilistic uncertainty modeling to enable improved gener-
alization performance. This property has made DRO increasingly important in ML for addressing
distribution shifts, noisy data, and adversarial conditions [18, 24–26, 37].

The performance of DRO algorithms critically depends on the design of the ambiguity set,
which must contain meaningful distributional variations around the nominal distribution. A com-
mon approach is to model the ambiguity set using ϕ-divergences, such as the Kullback–Leibler (KL)
divergence [11, 12, 14, 15, 21]. Although such ϕ-divergence-based formulations can sometimes
yield closed-form solutions [11, 12], they require that any distribution P in the ambiguity set be
absolutely continuous with respect to the nominal distribution P0 (denoted P ≪ P0), meaning that
for any measurable set A, if P0(A) = 0, then P (A) = 0. This implicit constraint limits robustness
in scenarios with support shifts. In contrast, Wasserstein-DRO leverages the Wasserstein distance
to define the ambiguity set, allowing for support shifts. However, solving Wasserstein-DRO over
the infinite probability space is difficult. Some approaches [4, 9, 23] reformulate Wasserstein-DRO
as a finite-dimensional optimization problem based on the convex assumptions which typically do
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not hold in ML. Other methods approximate Wasserstein-DRO via adversarial optimization [9, 35],
but such relaxations are overly conservative, limiting their ability to fully leverage the benefits of
probabilistic uncertainty modeling.

Recent advances have aimed to address the challenges of ambiguity modeling in DRO. For
example, [20] incorporates data geometric properties into the design of discrepancy metrics, thereby
reducing the complexity of the ambiguity set. In addition, a recent work [41] studies DRO with
ambiguity sets defined by a generalized Sinkhorn distance, which enables modeling uncertainty
across distributions with different support space. Another work [26] constructs a Wasserstein-based
ambiguity set in the latent space of generative models and subsequently applies Wasserstein-DRO
methods to solve the problem. Additional related studies are discussed in Appendix A.

Different from these approaches, our work is the first to model the ambiguity set in the space
of diffusion models, which offers several advantages: (1) Diffusion models have a strong capability
to represent the underlying data distribution, ensuring that the distributions in the ambiguity set
remain consistent with the nominal distribution. (2) Diffusion models are capable of producing
diverse samples beyond the training support space, thereby enabling the discovery of worst-case
distributions. (3) Diffusion models provide a finite, parameterized optimization space, avoiding the
need to solve problems over an infinite probability space.

Our main contributions are summarized below: (1) We introduce a novel Diffusion Ambiguity
Set for DRO, which encompasses diverse distributions while preserving consistency with the nom-
inal distribution. (2) We design an inner maximization procedure for DRO with the proposed Dif-
fusion Ambiguity Set, enabling tractable iterative optimization within a finite, parameterized space.
(3) We propose D-DRO (Algorithm 1), which solves the resulting minimax optimization problem,
and formally establish its stationary convergence in Theorems 1 and 2. (4) We demonstrate the
superior performance of D-DRO on the challenging ML task of renewable energy prediction.

2. DRO and Ambiguity Modeling

Distributionally Robust Optimization. DRO optimizes for the worst-case performance given an
ambiguity set constructed on a nominal distribution P0 which can be an empirical distribution S0.
Consider an objective function f(w, x) with the decision variable w ∈ W and the random parameter
x ∈ X . Given the nominal distribution P0(x) of the random parameter x, DRO solves the following
minimax optimization problem.

w = min
w∈W

max
P∈B(P0,ϵ)

Ex∼P [f(w, x)], (1)

where B(P0, ϵ) is the ambiguity set containing possible testing distributions which is typically mod-
eled as a distribution ball B(P0, ϵ) = {P | D(P, P0) < ϵ} given a distribution discrepancy measure
D and an adversary budget ϵ.

Ambiguity modeling in DRO. The choice of the ambiguity set in DRO has a significant impact
on both generalization performance and solution tractability. We observe that a well-designed ambi-
guity set in DRO should satisfy the following properties: First, it should include diverse distributions
beyond the support of the nominal distribution, enabling the identification of various worst-case dis-
tributions. Second, the distributions within the ambiguity set should remain realistic and consistent
with the nominal distribution, balancing the average-case and worst-case performance. Finally, the
ambiguity set should facilitate a tractable solution of the DRO problem despite the infinite proba-
bility space.
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3. Method

3.1. Diffusion Ambiguity Modeling

Diffusion models. Diffusion models learn an underlying distribution P0 from its finite dataset S0

and can generate diverse samples from this distribution. The model training and inference are based
on a forward process and a reverse process, detailed in Appendix B. The forward process begins
with an initial sample x0 ∈ S0 and evolves according to a stochastic process to produce random
variables x1, . . . , xT with marginal distributions Pt, t ∈ [T ]. The reverse process starts with xT
drawn from a prior distribution π that approximates PT and reconstructs xT−1, . . . , x0 by following
the reverse diffusion process, which depends on the score function (the gradient of the log-density
of the underlying distribution∇x logPt(x)).

The score-matching method employs a ML model sθ(x, t) with parameters θ to approximate
the distribution gradient ∇x logPt(x) by minimizing an empirical score-matching loss J(θ, S0) on
the dataset S0. Once the score model sθ(x, t) is obtained, we can generate samples x0, . . . , xT−1

according to the distribution Pθ(x0:T ) = π(xT )
∏T

t=1 Pθ(xt−1 | xt), where Pθ(xt−1 | xt) =
N
(
xt−1;µθ(xt, t),Σθ(xt, t)

)
where µθ(xt, t) and Σθ(xt, t)

)
rely on the score model parameter θ.

Theorem 1 in [33] (restated in Lemma 3) shows that if the score-matching loss is bounded, i.e.,
J(θ, S0) ≤ ϵ, then the KL divergence DKL(P0 ∥Pθ) is bounded by ϵ plus additional approxima-
tion error terms. We note that the KL divergence DKL(P0 ∥Pθ) in Lemma 3 differs from the KL
divergence DKL(Pθ ∥P0) commonly used in KL-DRO. Importantly, the former allows Pθ to have a
broader support than P0 (i.e., P0 ≪ Pθ).

Diffusion ambiguity set. We can model the ambiguity set based on the score-matching loss of
a diffusion model, due to its property to constrain the distributional discrepancy while allowing a
broader support space. This leads to DRO with diffusion ambiguity sets:

min
w∈W

max
θ∈Θ

Ex∼Pθ
[f(w, x)], s.t. J(θ, S0) ≤ ϵ, (2)

where Pθ denotes the distribution of the diffusion reverse process, and ϵ is the adversarial budget.
The diffusion ambiguity set enhances DRO performance as follows. Due to the distribution

modeling capability of diffusion models, score-matching constraint ensures that the diffusion-modeled
distributions remain consistent with the nominal data, mitigating over-conservativeness issues in
DRO. It also leverages diffusion models’ ability to generate diverse samples beyond the nominal
support, enabling the identification of worst-case distributions given any w. Furthermore, the inner
maximization in (2) operates in a finite, parameterized space, ensuring tractable optimization.

3.2. Diffusion-Based Inner Maximization

To solve the inner maximization of (2), which is a constrained optimization over the diffusion pa-
rameter space, we adopt a dual learning approach: introducing a Lagrangian dual µ > 0 to refor-
mulate it as the unconstrained problem

max
θ

Ex∼Pθ
[f(w, x)]− µJ(θ, S0), (3)

and updating µ via dual gradient descent. As is shown by InnerMax in Algorithm 1, we increase
µ when J exceeds the budget ϵ and decreasing it otherwise.

We apply the policy optimization methods to transform the objective in (3) into a tractable
form. Vanilla policy gradient [36] directly calculates the empirical gradient of the objective in (3)
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Algorithm 1 Diffusion-based DRO (D-DRO)
Input: Training dataset S0; Adversary budget ϵ > 0; Step size η > 0, λ > 0.
Initialization: Initialize decision variable w, diffusion parameter θ and Lagrangian weight µ > 0
for j = 1, 2, · · · , I do

// Diffusion-based inner maximization (InnerMax)

for k = 1, 2, · · · ,K do
Update diffusion parameter θk by solving (3) given µ
Update Lagrangian parameter: µ← max{0, µ+ η

(
J(θk, S0)− ϵ

)
}

end
// Outer minimization to update decision variable

Generate dataset Sj with diffusion model Pθ(j) with θ(j) uniformly selected from [θ1, · · · , θK ]
Update decision variable:w: wj = wj−1 − λ · ∇wEx∈Sj [f(wj−1, x)]

end
return w uniformly selected from [w1, · · · , wI ]

as is detailed in C.1. Proximal Policy Optimization (PPO) [27] is believed to have more stable
performance. It transforms the objective (3) into a differentiable form as is detailed in Section C.2.

3.3. D-DRO Algorithm

We design D-DRO in Algorithm 1 which solves the mini-max optimization following the framework
of Gradient Descent with Max-Oracle (GDMO) in [13]. In each iteration, we first run InnerMax
to search for the worst-case diffusion model Pθ(j) that maximizes the expected loss of the current
variable w. Next, we generate an adversarial dataset Sj based on Pθ(j) and use it to update w. The
convergence of Algorithm 1 in proved in Theorem 1 and Theorem 2.

4. Analysis

Theorem 1 (Convergence of Inner Maximization) Let θ∗ be the optimal diffusion parameter that
solves the inner maximization (2) given a variable w. If the expected score-matching loss is bounded
as J(θ) ≤ J̄ and the step size is chosen as η ∼ O( 1√

K
), the inner maximization error holds that

∆′ := Ex∼Pθ∗ [f(w, x)]− EkEx∼Pθk
[f(w, x)] ≤ 1√

K
max{ϵ, J̄}∥µ(1)∥, (4)

where the outer expectation is taken over the randomness of output selection. In addition, the
KL-divergence with respect to the nominal distribution is bounded as Ek[DKL(P0||Pθk)] ≤ ϵ +
max{ϵ,J̄}|µC−µ(1)|√

K(µC−µ∗)
+DKL(PT ||π)+C1, where µC > µ∗ with µ∗ being the optimal dual variable and

C1 is a constant, PT is the output distribution of the forward process, and π is the initial distribution
of the reverse process.

Proofs of Theorem 1 are provided in Appendix D.2. The bound shows that when the inner
iteration number K is sufficiently large, the inner maximization error will be small enough, so
D-DRO can find a worst-case distribution in the Diffusion Ambiguity Set. Moreover, the reverse KL-
divergence w.r.t. the nominal distribution is bounded by the budget ϵ, the KL-divergence between
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PT and π, and the constant gap C1 due to the approximation of the score matching loss [32].This
implies that we can adjust the adversarial budget ϵ to get a worst-case distribution that is consistent
with the nominal distribution.

Theorem 2 (Convergence of D-DRO) Assume that objective f(w, x) is β−smooth and L−Lipschitz
with respect to w and is upper bounded by f̄ . If each dataset Sj sampled from diffusion model con-

tains n examples and the step size is chosen as λ ∼ O(
√

1
βL2H

), then with probability 1 − δ, δ ∈
(0, 1), the average norm of Moreau envelope of ϕ(w) := maxθ EPθ

[f(w, x)] satisfies

Ej,k

[
∥∇ϕ 1

2β
(w)∥2

]
≤ 4β∆′ +

V1√
n
+

V2√
H

, (5)

where the expectation is taken over the randomness of output selection, ∆′ is the error of inner max-
imization bounded in Theorem 1, V1 = 8βf̄

√
log(2/δ) and V2 = 4L

√
(ϕ 1

2β
(w1)−minw ϕ(w))β.

The proof of Theorem 2 is deferred to Appendix D.3. It shows that with sufficiently large
iteration number H and sampling size n, the average gradient norm of the Moreau envelope for
the optimal inner maximization function ϕ(w) is bounded by the error ∆′ of the maximization
oracle. Since ∆′ decreases as the inner iteration number K becomes sufficiently large as proved by
Theorem 1, the average gradient norm of the Moreau envelope can be small enough. As is detailed
in Appendix D.3.1, this implies that the output w converges to an approximately stationary point of
the optimal inner maximization function ϕ(w). Thus, D-DRO can find an approximated solution of
(1) with enough diffusion-based maximization and minimization iterations.

5. Experiment
Table 1: Test MSE on different datasets(Partial).

Datasets
(Wasserstein Distance)

Algorithms

D-DRO KL-DRO W-DRO DML ML

BANC 22 (0.0240) 0.0047 0.0086 0.0073 0.0078 0.0183
BANC 21 (0.1213) 0.0054 0.0112 0.0121 0.0093 0.0238

QLD 22 (0.2782) 0.0192 0.0379 0.0557 0.0352 0.0667
QLD 21 (0.3054) 0.0186 0.0377 0.0574 0.0339 0.0696

GB 22 (0.1255) 0.0105 0.0197 0.0245 0.0172 0.0360
GB 21 (0.1359) 0.0094 0.0181 0.0229 0.0158 0.0340

Average 0.0163 0.0288 0.0342 0.0271 0.0450

Maximum 0.0509 0.0831 0.0879 0.0834 0.0946

In this section, we present numerical studies on
a ML for renewable prediction task based on the
Electricity Maps[1] datasets (experiment setups
in Appendix E). A part of results are given in
Table 1 where D-DRO are compared with base-
lines in Appendix E.1.1 on various OOD test-
ing datasets in Appendix E.1.2. We observe
that all methods perform better on datasets with
smaller Wasserstein distribution shifts. While
DML and other DRO baselines outperform ML,
D-DRO consistently outperforms them across
all OOD datasets, owing to its diffusion-based ambiguity set that effectively captures worst-case
yet realistic distributions. More evaluation results are provided in Appendix E.

6. Conclusion

In this paper, we propose D-DRO, which introduces a novel diffusion-based ambiguity modeling for
DRO, and develops D-DRO to solve the DRO with diffusion ambiguity set. We prove the station-
ary convergence performance of D-DRO. The experiments demonstrate robust OOD generalization
performance of D-DRO. Overall, this new DRO solution has the potential to enhance the robustness
of critical statistical optimization and ML tasks under distribution shifts and imperfect data.
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Appendix A. Related Work

A.1. Distributionally Robust Optimization

DRO algorithms are widely studied to improve the OOD generalization performance for various
optimization and ML tasks [12, 21, 26]. ϕ-divergence-based DRO [11, 12, 14, 15] is one of the
commonly-used DRO method. A closed-form solution to the inner maximization of (1) with KL-
divergence-based ambiguity set is provided by [11]. While we can usually get tractable DRO solu-
tions based on ϕ-divergence, the definition of ϕ-divergence requires any distribution P in the am-
biguity set to be absolutely continuous with respect to the nominal distribution, which limits its ap-
plication in statistical learning tasks. Alternatively, many studies adopt Wasserstein distance-based
DRO [4, 9, 12, 17, 23]. Wasserstein measure has no restrictions on the support of the distribution,
but it is difficult to get a tractable solution for W-DRO. Some methods [4, 9, 12, 17, 23] reformu-
late Wasserstein-constrained DRO into a tractable finite optimization based on the assumption of
convex objectives which typically do not hold in deep learning. Other methods relax Wasserstein-
constrained DRO into an adversarial optimization problem [9, 28, 34], but this relaxation can be
overly conservative and cannot fully exploit the benefits of probabilistic ambiguity modeling.

A line of recent studies focuses on addressing the challenges in ambiguity modeling for DRO [20,
22, 26, 40–42]. Among them, [20] incorporates data geometric properties into the design of dis-
crepancy metrics, reducing the size of the ambiguity set. [26] constructs a novel ambiguity set on
the latent space of generative models such that the adversarial distribution is realistic and apply
Wasserstein-based DRO solutions. Ma et al. [22] propose a differentiable parameterized Second-
Order Cone (SOC) to characterize the ambiguity set and develop an end-to-end framework in which
an ML model is trained to predict the ambiguity set for downstream DRO tasks. Moreover, a latest
work [41] introduces a regularized nonconvex DRO method with generalized Sinkhorn distance,
reformulating the problem as a contextual nested stochastic optimization and proving convergence
without assuming strong convexity or large batches. Different from these methods, we utilize the
strong distribution learning capability of diffusion models to build the ambiguity set, enabling the
discovery of worst-case and realistic distributions. At the same time, the proposed algorithm D-DRO
converts DRO into a finite tractable problem in the diffusion parameter space.

A.2. Generative Models for Robust Learning

Generative models have been widely studied to generate adversarial samples for robust training [5–
7, 39]. The target of these works is to generate adversarial attacking examples which is fundamen-
tally different from the worst-case distribution generation which is studied in this paper and aims to
improve OOD generalization. A recent paper proposed DRAGEN that [26] models the adversarial
distribution on the latent space of a generative model. However, it still lies in the Wasserstein-based
framework. Wang et al. [38] introduced a Generate-then-Optimize framework, where a diffusion
model is trained to generate data for downstream statistical optimization with a focus on the con-
ditional value-at-risk (CVaR) objective. Although related to our work, their method mainly targets
risk mitigation within in-distribution settings, while D-DRO is specifically designed to improve ro-
bustness under OOD scenarios.

10
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Appendix B. Preliminaries of Diffusion Models

This paper exploits diffusion models to improve the performance of DRO, so we summarize the
preliminaries about diffusion models in this section. We introduce a score-based diffusion modeling
by Stochastic Differential Equations (SDEs) [32]. They rely on forward and backward stochastic
processes introduced as follows.

Forward Process. The forward process incrementally injects noise into the data, generating a
sequence of perturbed samples. It begins with an initial sample x0 ∈ Rd drawn from the underlining
distribution P0, and evolves according to a stochastic process as:

dx = b(x, t)dt+ r(t)dw, (6)

where b(·, t) : Rd → Rd is a vector-valued function, r(t) ∈ R, w is a standard Wiener process
and dw is white Gaussian noise. By the forward process, we get a collection of random variables
{xt}t∈[0,T ]. We use Pt to represent the distribution of xt and Pt|0 to denote the conditional dis-
tribution of xt given x0 ∼ P0. With a sufficiently long time T , the marginal distribution PT (xT )
approximates a tractable prior distribution π(x) which is typically chosen as a standard Gaussian
distribution.

Reverse Process. A reverse diffusion process is associated with the forward equation in (6) and
is expressed as

dx =
(
b(x, t)− r(t)2∇x logPt(x)

)
dt+ r(t)dw̄, (7)

where w̄ is a standard Wiener process in the reverse-time direction, ∇x logPt(x) is the time-
dependent score function.

Score Matching. In the reverse process, the score function ∇x logPt(x) plays a critical role in
directing the dynamics. To estimate the score function ∇x logPt(x), we train a score-based model
sθ(x, t) based on samples generated from the forward diffusion process. The score-based model
should minimize the following score-matching loss:

JSM(θ) =

∫ T

0
EPt(x)

[
ι(t) ∥∇x logPt(x)− sθ(x, t)∥2

]
dt,

where ι(t) > 0 is a positive weighting function. We usually approximate the score-matching loss
by a tractable denoising score-matching loss up to a constant that does not rely on θ:

J(θ)=

∫ T

0
EP0(x)Pt|0(x′|x)

[
ι(t)
∥∥∇x′ logPt|0(x

′|x)−sθ(x, t)
∥∥2]dt, (8)

Sampling. If we discretize the reverse process, initialize xT ∼ π and replace∇x logPt(x) with
the score-based model sθ(x, t), we can generate samples with a Markov chain with T steps:

xt−1 = xt + [b(xt, t)− r2(t)sθ(xt, t)]∆t+ r(t)
√
|∆t|zt, (9)

where ∆t is a small enough constant and zt ∼ N (0, I). Most existing diffusion models generate
samples following the Markov chain [10, 30, 31] and a common expression for the joint distribution
of the reverse outputs is

Pθ(x0:T ) = π(xT )

T∏
t=1

Pθ(xt−1 | xt), (10)

11
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where Pθ(xt−1 | xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)).
We have the following lemma which shows the reverse KL divergence between the diffusion

model and the nominal distribution is bounded.

Lemma 3 Given the above assumptions D.1.1, if the score-matching loss satisfy J(θ, S) ≤ ϵ, the
output distribution of the diffusion model Pθ satisfies:

DKL(P0 ∥Pθ) ≤ ϵ+DKL(PT ∥π) + C1, (11)

where PT is the output distribution of the forward process and PT ≈ π by the design of diffusion
models, and C1 is a constant from approximating the score-matching loss.

Note that the KL-divergence DKL(P0||Pθ) in Lemma 3 is not the KL-divergence DKL(Pθ||P0)
commonly used in KL-DRO. The former KL-divergence allows Pθ to have broader support space
than P0 (P0 ≪ P ). By Lemma 3, if we find an adversarial distribution Pθ by (2), Pθ also stays
close enough to the training distribution P0 through a KL-divergence depending on the budget ϵ.
Therefore, the constraint in (2) can define a probabilistic ambiguity set for DRO.

Appendix C. Details of InnerMax in D-DRO Algorithm 1

C.1. Policy Gradient for Diffusion-based InnerMax

A vanilla policy gradient can transform (3) into

max
θ

ÊPθ(x0:T )[lnPθ(x0:T ) · l(hw, x0)]− λ · J(θ, S0), (12)

where ÊPθ(x0:T ) is the empirical mean based on the T−step samples for the backward process of
the diffusion model Pθ, and lnPθ(x0:T ) = −

∑T
t=1[xt−1−µθ(xt, t)]

2+C2 where C2 is a constant.
The derivation details are given below.

C.1.1. OBJECTIVE DERIVATION BY POLICY GRADIENT

Let x0:T be the output vector of each step in the backward process of the diffusion model. De-
note P0:T,θ as the joint distribution of x0:T . Since x0 ∼ Pθ, we can express the first term of the
Lagrangian-relaxed objective as

Ex∼Pθ
[f(w, x)] = Ex0:T∼P0:T,θ

[f(w, x0)]. (13)

Then, the gradient of Lagrangian-relaxed objective can be expressed as

∇θ (Ex∼Pθ
[f(w, x)]− µJ(θ, S0))

=∇θ

(
Ex0:T∼P0:T,θ

[f(w, x0)]− µJ(θ, S0)
)

=

∫
x0:T

f(w, x0)∇θP0:T,θ(x0:T )dx0:T − µ∇θJ(θ, S0)

=

∫
x0:T

P0:T,θ(x0:T )f(w, x0)∇θ lnP0:T,θ(x0:T )dx0:T − µ∇θJ(θ, S0)

=Ex0:T∼P0:T,θ
[f(w, x0)∇θ lnP0:T,θ(x0:T )]− µ∇θJ(θ, S0)

(14)

12
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The first term Ex0:T∼P0:T,θ
can be calculated by empirical mean Êx0:T∼P0:T,θ

based on the examples
sampled from P0:T,θ. Thus, we can equivalently implement the gradient ascent by optimizing the
objective in (12):

max
θ

Êx0:T∈P0:T,θ
[lnP0:T,θ(x0:T ) · f(w, x0)]− µ · J(θ, S0), (15)

Next, we derive the expression for lnP0:T,θ(x0:T ). Consider a discrete-time diffusion backward
process as

xt−1 = µθ(xt, t) + σtwt, (16)

where wt is a standard multi-dimensional Gaussian variable. Given θ, the conditional probability at
each step t is

Pt−1,θ(xt−1 | xt) = N (xt−1, µθ(xt, t), σ
2
t I). (17)

We can explicitly express the joint distribution P0:T,θ of x0:T for all T backward steps:

P0:T,θ(x0:T ) = P (xT )
T∏
t=1

Pt−1,θ(xt−1 | xt) =
1√
2π

e−
∥xT ∥2

2 · 1√
2πσt

e
−

∑T
t=1

∥xt−1−µθ(xt,t)∥
2

2σ2
t .

(18)
Thus, we can get the expression of lnP0:T,θ(x0:T ) as

lnP0:T,θ(x0:T ) = −
T∑
t=1

∥xt−1 − µθ(xt, t)∥2/(2σ2
t ) + C2, (19)

where C2 = − ln(2πσt)− ∥xT ∥2
2 .

C.2. PPO for Diffusion-based InnerMax

The policy gradient algorithm requires frequent resampling by the diffusion model Pθ, resulting in
high complexity and unstable performance. A more popular policy optimization method is Proximal
Policy Optimization (PPO) [27] which transforms (3) into

max
θ

ÊPθold
(x0:T )[min(rθl(hw, x0)), clip(rθ(x0:T ), 1− κ, 1 + κ) · l(hw, x0))]− λ · J(θ, S0), (20)

where Pθold is a reference diffusion model used for sampling the backward sequence, the proba-

bility ratio is rθ(x0:T ) = Pθ(x0:T )
Pθold

(x0:T ) = exp{−
∑T

t=1(
∥xt−1−µθ(xt,t)∥2

2σ2
t

− ∥xt−1−µθold
(xt,t)∥2

2σ2
t

)}, and

κ ∈ (0, 1) is the clipping parameter to avoid overly-large policy updates. To reduce the training
complexity, instead of optimizing all the T steps, we can only optimize the last T ′ steps of the

backward process by choosing rθ(x0:T ′) = exp{−
∑T ′

t=1(
∥xt−1−µθ(xt,t)∥2

2σ2
t

− ∥xt−1−µθold
(xt,t)∥2

2σ2
t

)}
and only keep the loss terms for corresponding steps in J(θ, S0). This practice has been verified by
our experiments in Appendix E. More derivation details are given below.

13
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C.2.1. OBJECTIVE DERIVATION BY PROXIMAL POLICY OPTIMIZATION

In this PPO method, we convert the first term of (3) as a PPO-like objective given a reference
diffusion model Pθ0 , i.e.

Ex∼Pθ
[f(w, x)] = Ex0:T∼P0:T,θ

[f(w, x0)]

= Ex0:T∼P0:T,θ0

[
P0:T,θ(x0:T )

P0:T,θ0(x0:T )
f(w, x0)

]
,

(21)

where the probability ratio is

rθ(x0:T ) =
P0:T,θ(x0:T )

P0:T,θ0(x0:T )
= exp

{
−

T∑
t=1

(
∥xt−1 − µθ(xt, t)∥2

2σ2
t

− ∥xt−1 − µθ0(xt, t)∥2

2σ2
t

)

}
given the joint probability expression. The expectation can be approximated by empirical mean
based on the examples sampled by P0:T,θ0 . Like PPO, we apply clipping on the ratio to avoid
overly-large updates, and we can get the objective in Eqn. (20):

max
θ

ÊP0:T,θ0
(x0:T )[min(rθ(x0:T )f(w, x0)), clip(rθ(x0:T ), 1− κ, 1 + κ) · f(w, x0))]− µ · J(θ, S0),

(22)
where κ ∈ (0, 1) is the clipping parameter.

Appendix D. Theorem Proofs

D.1. Proof of Lemma 3

D.1.1. BOUND OF THE SCORE-MATCHING LOSS BY KL DIVERGENCE

Lemma 3 is a result based on conclusion of Theorem 1 in [33]. For completeness, we give the
full proof of Theorem 1 in [33] (Lemma 4), and then we derive the concrete expressions for the
constants in Lemma 3.

Assumptions We make the following assumptions for all the lemmas and theorems in the paper.

1. P0(x) is a density function with continuous second-order derivatives and Ex∼P0

[
∥x∥22

]
<∞.

2. The prior distribution π(x) is a density function with continuous second-order derivatives and
Ex∼π

[
∥x∥22

]
<∞.

3. ∀t ∈ [0, T ]: f(·, t) is a function with continuous first order derivatives. ∃C > 0,∀x ∈ Rd, t ∈
[0, T ]: ∥b(x, t)∥2 ≤ C(1 + ∥x∥2)

4. ∃C > 0, ∀x, y ∈ Rd : ∥b(x, t)− b(y, t)∥2 ≤ C∥x− y∥2.

5. g is a continuous function and ∀t ∈ [0, T ], |r(t)| > 0.

6. For any open bounded set O,
∫ T
t=0

∫
O ∥Pt(x)∥22 + dr(t)2∥∇xPt(x)∥22dxdt.

7. ∃C > 0,∀x ∈ Rd, t ∈ [0, T ] : ∥∇x logPt(x)∥2 ≤ C(1 + ∥x∥2).

8. ∃C > 0,∀x, y ∈ Rd : ∥∇x logPt(x)−∇x logPt(y)∥2 ≤ C(∥x− y∥2).

14
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9. ∃C > 0,∀x ∈ Rd, t ∈ [0, T ] : ∥sθ(x, t)∥2 ≤ C(1 + ∥x∥2).

10. ∃C > 0,∀x, y ∈ Rd : ∥sθ(x, t)− sθ(y, t)∥2 ≤ C(∥x− y∥2).

11. Novikov’s condition: E
[
exp(12

∫ T
t=0 ∥∇x logPt(x)− sθ(x, t)∥22dt)

]
<∞.

Lemma 4 Let P0(x) be the underlining data distribution, π(x) be a known prior distribution, and
Pθ be marginal distribution of x̂θ(0), the output of reverse-time SDE defined as below.

dx̂ = [b(x̂, t)− r(t)2sθ(x̂, t)]dt+ r(t)dw̄, x̂θ(T ) ∼ π. (23)

With the assumptions in Section D.1.1, we have

DKL(P0∥Pθ) ≤ JSM (θ, r(·)2) +DKL(PT ∥π), (24)

where JSM (θ, r(·)2) = 1
2

∫ T
t=0 Ept(x)

[
r(t)∥∇x logPt(x)− sθ(x, t)∥22

]
dt.

Proof We denote the path measure of the forward outputs {xt}t∈[0,T ] as p and the path measure of
the backward outputs {x̂θ,t}t∈[0,T ] as q. By assumptions 1- 5, 9, 10, both p and q are uniquely given
by the forward and backward SDEs, respectively. Consider a Markov kernel M({zt}t∈[0,T ], y) :=
δ(z0 = y) given any Markov chain {zt}t∈[0,T ]. Since x0 ∼ P0 and x̂θ,0 ∼ Pθ, we have∫

M({xt}t∈[0,T ], x)dp({xt}t∈[0,T ]) = P0(x) (25)

∫
M({x̂θ,t}t∈[0,T ], x)dq(x̂θ,t}t∈[0,T ]) = Pθ(x) (26)

Here the Markov kernel M essentially performs marginalization of path measures to obtain distri-
butions at t = 0. We can use the data processing inequality with this Markov kernel to obtain

DKL(P0∥Pθ)

=DKL

(∫
M({xt}t∈[0,T ], x)dp({xt}t∈[0,T ])∥

∫
M({x̂θ,t}t∈[0,T ], x)dq(x̂θ,t}t∈[0,T ])

)
≤DKL(p, q).

(27)

Since xT ∼ PT and x̂θ,T ∼ π. Leveraging the chain rule of KL divergence, we have

DKL(p, q) = Ep

[
log(

p(x1:T | xT )PT (xT )

q((x̂θ,1:T | x̂θ,T )π(x̂θ,T )
)

]
= DKL(PT ∥π) + Ez∼PT

[DKL(p(· | xT = z)∥q(· | x̂θ,T = z))] .

(28)

Under assumptions 1,3-8, the SDE in Eqn. (6) has a corresponding reverse-time SDE as

dx = [b(x, t)− r(t)2∇x logPt(x)] + r(t)dw̄. (29)

Since Eqn. (29) is the time reversal of Eqn. (6), they share the same path measure p. Thus,
Ez∼PT

[DKL(p(· | xT = z)∥q(· | x̂θ,T = z))] can be viewed as the KL divergence between the path

15
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measures induced by the two SDEs in Eqn. (6) and Eqn. (23) with the same starting points xT =
x̂θ,T = z.

The KL divergence between two SDEs with shared diffusion coefficients and starting points
exists under assumptions 7,-11, and can be bounded by the Girsanov theorem

DKL(p(· | xT = z)∥q(· | x̂θ,T = z)) = Ep

[
log

dp

dq

]
=Ep

[∫ T

t=0
r(t)(∇x logPt(x)− sθ(x, t))dw̄t +

1

2

∫ T

t=0
r(t)2∥∇x logPt(x)− sθ(x, t)∥22dt

]
=Ep

[
1

2

∫ T

t=0
r(t)2∥∇x logPt(x)− sθ(x, t)∥22dt

]
=
1

2

∫ T

t=0
EPt(x)

[
r(t)2∥∇x logPt(x)− sθ(x, t)∥22

]
dt = JSM (θ, r(·)2),

(30)

where the second equality holds by Girsanov Theorem II, and the third equality holds because Ys =∫ s
t=0 r(t)(∇x logPt(x) − sθ(x, t))dw̄t is a continuous-time Martingale process (E[Ys | Yτ,τ≤s′ ] =
Ys′ ,∀s′ ≤ s) and we have E[Ys − Ys′ ] = 0,∀s′ < s.

D.1.2. PROOF OF LEMMA 3

Lemma 3. Given the assumptions in Appendix D.1.1, if the score-matching loss satisfies J(θ, S) ≤
ϵ, the output distribution of the diffusion model Pθ satisfies

DKL(P0||Pθ) ≤ ϵ+DKL(PT ||π) + C1,

where PT is the output distribution of the forward process, π is a prior distribution of the diffusion
model and PT ≈ π by the design of diffusion models, and C1 is a constant that does not rely on θ.

The score matching loss J(θ, S0) in (8) with ι(t) = r(t)2 is actually the denoising score match-
ing loss JDSM (θ, r(·)2), i.e.

J(θ, S0) = JDSM (θ, r(·)2) = 1

2

∫ T

0
Ex0∼P0Ext∼Pt|0

[
r(t)2

∥∥∇xt logPt|0(xt | x0)− sθ(xt, t)
∥∥2]dt,
(31)

which is used to compute the original score matching loss JSM (θ, r(·)2) given a dataset S0. The
gap between JDSM (θ, r(·)2) and JSM (θ, r(·)2) is a constant C1 that does not depend on θ, which
is shown as below.

The difference is expressed as

JSM (θ, r(·)2)− JDSM (θ, r(·)2)

=
1

2

∫ T

t=0
EP0,t(x0,xt)

[
r(t)2

(
∥∇xt logPt(xt)− sθ(xt, t)∥22 − ∥∇xt logPt|0(xt | x0)− sθ(xt, t)∥22

)]
dt

=

∫ T

t=0
r(t)2

EP0,t(x0,xt)

[
−
〈
sθ(xt, t),∇xt logPt(xt) +∇xt logPt|0(xt | x0)

〉]︸ ︷︷ ︸
(1)

+C ′
1(x0, xt)

 dt,

(32)
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where P0,t is the joint distribution of x0 and xt, and C ′
1(x0, xt) =

EP0,t(x0,xt)

[
1
2∥∇xt logPt(xt)∥22 − 1

2∥∇xt logPt|0(xt | x0)∥22
]
.

The first term (1) is zero because

EP0,t(x0,xt) [⟨sθ(xt, t),∇xt logPt(xt)⟩] = EPt(xt) [⟨sθ(xt, t),∇xt logPt(xt)⟩]

=

∫
xt

〈
sθ(xt, t),

1

Pt(xt)
∇xtPt(xt)

〉
Pt(xt)dxt

=

∫
xt

〈
sθ(xt, t),∇xt

∫
x0

Pt|0(xt | x0)P0(x0)dx0

〉
dxt

=

∫
xt

〈
sθ(xt, t),

∫
x0

Pt|0(xt | x0)P0(x0)∇xt log(Pt(xt | x0))dx0
〉
dxt

=

∫
x0,xt

P0,t(x0, xt)
〈
sθ(xt, t),∇xt log(Pt|0(xt | x0))

〉
dx0dxt

=EP0,t(x0,xt)

[〈
sθ(xt, t),∇xt logPt|0(xt | x0)

〉]

(33)

Thus, we can bound the gap between JDSM (θ, r(·)2) and JSM (θ, r(·)2) as

C1 = JSM (θ, r(·)2)− JDSM (θ, r(·)2) =
∫ T

t=0
r(t)2C ′

1(x0, xt)dt, (34)

where C ′
1(x0, xt) = EP0,t(x0,xt)

[
1
2∥∇xt logPt(xt)∥22 − 1

2∥∇xt logPt|0(xt | x0)∥22
]
.

Therefore, if J(θ, S0) = JDSM (θ, r(·)2) ≤ ϵ, by Lemma 4, we have

DKL(P0∥Pθ) ≤JSM (θ, r(·)2) +DKL(PT ∥π)
=JDSM (θ, r(·)2) +DKL(PT ∥π) + C1

≤ϵ+DKL(PT ∥π) + C1,

(35)

which completes the proof.

D.2. Proof of Theorem 1

Theorem 1. Let θ∗ be the optimal diffusion parameter that solves the inner maximization (2) given
a variable w. If the expected score-matching loss is bounded as J(θ) ≤ J̄ and the step size is
chosen as η ∼ O( 1√

K
), the inner maximization error holds that

∆′ := Ex∼Pθ∗ [f(w, x)]− EkEx∼Pθk
[f(w, x)] ≤ 1√

K
max{ϵ, J̄}∥µ(1)∥, (36)

where the outer expectation is taken over the randomness of output selection. In addition, the
KL-divergence with respect to the nominal distribution is bounded as Ek[DKL(P0||Pθk)] ≤ ϵ +
max{ϵ,J̄}|µC−µ(1)|√

K(µC−µ∗)
+ DKL(PT ||π) + C1, where µC > µ∗ and C1 are constants, PT is the output

distribution of the forward process, and π is the initial distribution of the reverse process.
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D.2.1. CONVERGENCE OF DUAL GRADIENT DESCENT

To prove Theorem 1, we need the convergence analysis of a general dual gradient descent in the
following lemma.

Lemma 5 Assume that the dual variable is updated following

µk+1 = max{µk − η · bk, 0},

where η > 0 and bk has the same dimension as µ and max{·, 0} is an element-wise non-negativity
operation. With η as the step size in dual gradient descent, given any µ > 0, we have

1

K

K∑
k=1

⟨µk − µ, bk⟩ ≤ η
1

K

K∑
k=1

∥bk∥2 +
1

2Kη
∥µ− µ(1)∥2 (37)

Proof For any dimension j such that µk,j ≥ ηbk,j , we have µk+1,j = µk,j − η · bk,j , so it holds for
any µ > 0 that (

bk,j +
1

η
(µk+1,j − µk,j)

)
(µj − µk+1,j) = 0. (38)

For any dimension j such that µk,j < ηbk,j , we have µk+1,j = 0, and it holds for any µ > 0 that(
bk,j +

1

η
(µk+1,j − µk,j)

)
(µj − µk+1,j) = (bk,j −

µk,j

η
)µj ≥ (bk,j −

ηbk,j
η

)µj = 0. (39)

Combing (38) and (39) and we have for any µ > 0 that(
bk +

1

η
(µk+1 − µk)

)⊤
(µ− µk+1) ≥ 0. (40)

Therefore, it holds for any k ∈ [K] and µ > 0 that

(µk − µ)⊤bk =(µk − µk+1)
⊤bk + (µk+1 − µ)⊤bk

≤(µk − µk+1)
⊤bk +

1

η
(µk+1 − µk)

⊤(µ− µk+1)

=(µk − µk+1)
⊤bk +

1

2η

(
∥µ− µk∥2 − ∥µ− µk+1∥2 − ∥µk+1 − µk∥2

)
≤η∥bk∥2 +

1

2η

(
∥µ− µk∥2 − ∥µ− µk+1∥2

)
,

(41)

where the first inequality holds by (40), the second equality holds by three-point property, and the
last inequality holds because ∥a∥2 + ∥b∥2 ≥ 2a⊤b.

Taking the sum over k ∈ [K], we have

K∑
k=1

⟨µk − µ, bk⟩ ≤ η

K∑
k=1

∥bk∥2 +
1

2η

(
∥µ− µ1∥2

)
, (42)

which proves Lemma 5.
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D.2.2. BOUND OF EXPECTED OBJECTIVE IN THEOREM 1

Proof Denote F (θ) = Ex∼Pθ
[f(w, x)] and the optimal parameter to solve the inner maximization

of (2) is θ∗. Define the dual problem of the inner maximization of (2) as

Q(µ) = max
θ

F (θ) + µ(ϵ− J(θ, S0)) (43)

Given any µ > 0, it holds be weak duality that

F (θ∗) ≤ F (θ∗) + µ(ϵ− J(θ∗, S0)) ≤ Q(µ), (44)

where the second inequality holds because Q(µ) maximizes F (θ) + µ(ϵ− J(θ, S0)) over θ. Thus,
the average gap between the expected loss of θ∗ and θk is

1

K

K∑
k=1

(F (θ∗)− F (θk)) ≤
1

T

T∑
t=1

(Q(µk)− F (θk))

=
1

K

K∑
k=1

µk(ϵ− J(θk, S0))

≤ η
1

K

K∑
k=1

(ϵ− J(θk, S0))
2 +

1

2η

1

K
∥µ(1)∥2

≤ η(max{ϵ, J̄})2 + 1

η

1

K
∥µ(1)∥2

(45)

where the equality holds because θk = argmaxθ F (θ) + µk(ϵ− J(θ, S0)) by (3) and so Q(µk) =
F (θk) + µk(ϵ− J(θk, S0)), the second inequality holds by Lemma 5 with the choice of µ = 0, and
the last inequality holds by the assumption J(θk, S0) ≤ J̄ .

Choosing η = µ(1)
√
Kmax{ϵ,J̄} , it holds that

1

K

K∑
k=1

(F (θ∗)− F (θk)) ≤
1√
K

max{ϵ, J̄}µ(1), (46)

which proves the bound of the expected loss given the uniformly selected k ∈ [K].

D.2.3. BOUND OF KL DIVERGENCE IN THEOREM 1

For iteration k, denote b(θ) = ϵ− J(θ, S0) and bk = ϵ− J(θk, S0). Denote the constraint violation
on the score matching loss at round k as vk = J(θk, S0) − ϵ. Denote the optimal dual variable as
µ∗ = argminµQ(µ). Choose a dual variable µC > µ∗, we have the following decomposition.

K∑
k=1

(µk − µC)bk =
K∑
k=1

µk · bk +
K∑
k=1

(−µC) · bk (47)
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For the first term, we have
K∑
k=1

µk · bk =

K∑
k=1

F (θk) + µk · bk − F (θk) =

K∑
k=1

Q(µk)− F (θk)

≥ KQ(µ∗)−
K∑
k=1

F (θk)

≥ KQ(µ∗)−
K∑
k=1

max
θ∈{θ|J(θ,S0)≤ϵ+vk}

F (θ)

≥ KQ(µ∗)−
K∑
k=1

max
θ

(F (θ) + µ∗(ϵ+ vk − J(θ, S0)))

= KQ(µ∗)−KQ(µ∗)− µ∗
K∑
k=1

vk = −µ∗
K∑
k=1

vk,

(48)

where the first inequality is because µ∗ minimizes Q(µk), the second inequality holds because
θk ∈ {θ | J(θ, S0) ≤ ϵ + vk}, the third inequality holds by weak duality for µ∗. Continuing with
(47), we have

K∑
k=1

(µk − µC)bk ≥
K∑
k=1

(−µ∗vk + µC(J(θk, S0)− ϵ)) = (−µ∗ + µC)

K∑
k=1

vk, (49)

where the equality holds because vk = J(θk, S0)− ϵ.
By Lemma 5 with the choice of µ = µC , we have

1

K

K∑
k=1

(µk − µC)bk ≤ η
1

K

K∑
k=1

∥bk∥2 +
1

2Kη
(µC − µ(1))2 ≤ η(max{ϵ, J̄})2 + 1

2Kη
(µC − µ(1))2

(50)
If the step size is chosen as η = µ(1)

√
Kmax{ϵ,J̄} , it holds that

1

K

K∑
k=1

(µk − µC)bk ≤
1√
K

max{ϵ, J̄}

(
µ(1) +

|µC − µ(1)|2

2µ(1)

)
. (51)

Since µC is larger than µ∗, by (49), we have

1

K

K∑
k=1

vk ≤
1

K(µC − µ∗)

K∑
k=1

(µk − µC)bk ≤
max{ϵ, J̄}

(
µ(1) + |µC−µ(1)|2

2µ(1)

)
√
K(µC − µ∗)

=
C4√
K

, (52)

which means 1
K

∑K
k=1 J(θk, S0) ≤ ϵ+ C4√

K
.

Since J(θk, S0) is the denoising score matching loss JDSM (θ, r(·)2), by Lemma 3, we complete
the proof by

1

K

K∑
k=1

DKL(P0, Pθk) ≤
1

K

K∑
k=1

J(θk, S0) +DKL(PT ∥π) + C1

≤ ϵ+
C4√
K

+DKL(PT ||π) + C1,

(53)

20



DISTRIBUTIONALLY ROBUST OPTIMIZATION VIA DIFFUSION AMBIGUITY MODELING

where C1 =
∫ T
t=0 r(t)

2
(
EP0,t(x0,xt)

[
1
2∥∇xt logPt(xt)∥22 − 1

2∥∇xt logPt|0(xt | x0)∥22
])

dt, C4 =

max{ϵ,J̄}
(
µ(1)+

|µC−µ(1)|2

2µ(1)

)
(µC−µ∗) with µC > µ∗.

D.3. Proof of Theorem 2

Theorem 2. Assume that the DRO objective f(w, x) is β−smooth and L−Lipschitz with re-
spect to w and is upper bounded by f̄ . If each sampled dataset Sj from diffusion model has n

samples and the step size for minimization is chosen as λ ∼ O(
√

1
βL2H

), then with probabil-

ity 1 − δ, δ ∈ (0, 1), the average Moreau envelope of the optimal inner maximization function
ϕ(w) := maxθ EPθ

[f(w, x)] satisfies

E
[
∥∇ϕ 1

2β
(w)∥2

]
≤ 4β∆′ +

V1√
n
+

V2√
H

, (54)

where ∆′ is the error of inner maximization bounded in Theorem 1, V1 = 8βf̄
√
log(2/δ) and

V2 = 4L
√
(ϕ 1

2β
(w1)−minw ϕ(w))β.

Proof The proof of Theorem 2 follows the techniques of [13] with the difference that the maxi-
mization oracle is an empirical approximation. The optimization variable w is updated as wj =
wj−1 − λ · ∇wEx∈Sj [f(wj−1, x)]. Define ϕ(w) := maxθ EPθ

[f(w, x)] as the inner maximization
function and define ϕρ(w) := minw′ ϕ(w′) + 1

2ρ∥w − w′∥2 as the Moreau envelop of ϕ.
Denote ŵj = argminw ϕ(w) + β∥w − wj∥2 as the proximal point of the Moreau envelop

ϕ 1
2β
(w). Since f is β−smooth, we have

f(ŵj , x) ≥ f(wj , x) + ⟨∇wf(wj , x), ŵj − wj⟩ −
β

2
∥ŵj − wj∥2. (55)

Thus, it holds with probability at least 1− δ, δ ∈ (0, 1) that

ϕ(ŵj) ≥ EPθj
[f(ŵj , x)] ≥ ESj [f(ŵj , x)]−

f̄
√

log(2/δ)√
n

≥ ESj [f(wj , x)] + ⟨g(wj , Sj), ŵj − wj⟩ −
β

2
∥ŵj − wj∥2 −

f̄
√
log(2/δ)√

n

≥ EPθj
[f(wj , x)] + ⟨g(wj , Sj), ŵj − wj⟩ −

β

2
∥ŵj − wj∥2 −

2f̄
√
log(2/δ)√
n

≥ ϕ(wj)−∆′
j + ⟨g(wj , Sj), ŵj − wj⟩ −

β

2
∥ŵj − wj∥2 −

2f̄
√
log(2/δ)√
n

,

(56)

where the second inequality holds by applying McDiarmid’s inequality on EPθj
[f(ŵj , x)] and f̄ is

the upper bound of f , the third inequality holds by (55) and g(wj , Sj) = ESj [∇wf(wj , x)], the
forth inequality holds by applying McDiarmid’s inequality on ESj [f(wj , x)], and the last inequality
holds by Theorem 1.
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Now, it holds that

ϕ 1
2β
(wj+1)

=min
w′

ϕ(w′) + β∥wj+1 − w′∥2

≤ϕ(ŵj) + β∥wj − λg(wj , Sj)− ŵj∥2

=ϕ(ŵj) + β∥wj − ŵj∥2 + 2βλ < g(wj , Sj), ŵj − wj > +λ2β∥g(wj , Sj)∥2

≤ϕ 1
2β
(wj) + 2βλ < g(wj , Sj), ŵj − wj > +λ2β∥g(wj , Sj)∥2

≤ϕ 1
2β
(wj) + 2βλ

(
ϕ(ŵj)− ϕ(wj) + ∆′ +

β

2
∥ŵj − wj∥2 +

2f̄
√
log(2/δ)√
n

)
+ λ2βL2,

(57)

where the last inequality holds by (56).
Summing up inequality (57) from j = 1 to j = H , we have

ϕ 1
2β
(wj+1)

≤ϕ 1
2β
(w1) + 2βλ

H∑
j=1

(
ϕ(ŵj)− ϕ(wj) + ∆′

j +
β

2
∥ŵj − wj∥2 +

2f̄
√
log(2/δ)√
n

)
+ λ2βL2H,

(58)

and we further have

1

H

H∑
j=1

(
ϕ(wj)− ϕ(ŵj)−

β

2
∥ŵj − wj∥2

)

≤∆′
j +

2f̄
√

log(2/δ)√
n

+
ϕ 1

2β
(w1)−minw ϕ(w)

2βλH
+

λL2

2
,

(59)

Also, it holds that

ϕ(wj)− ϕ(ŵj)−
β

2
∥ŵj − wj∥2

=ϕ(wj) + β∥wj − wj∥2 − ϕ(ŵj)− β∥ŵj − wj∥2 +
β

2
∥ŵj − wj∥2

≥β

2
∥ŵj − wj∥2 =

1

4β
∥∇ϕ 1

2β
(wj)∥2,

(60)

where the inequality holds by the definition of ŵj , and the last equality holds by the property of
Moreau envelope such that 1

2β∇ϕ 1
2β
(w) = w − ŵj for any w ∈ W . Therefore, we have

1

H

H∑
j=1

∥∇ϕ 1
2β
(wj)∥2

≤4β 1

H

H∑
j=1

∆′
j +

8βf̄
√

log(2/δ)√
n

+
2(ϕ 1

2β
(w1)−minw ϕ(w))

λH
+ 2βλL2.

(61)
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By optimally choosing λ =

√
ϕ 1

2β
(w1)−minw ϕ(w)

βL2H
, we have

E
[
∥∇ϕ 1

2β
(wj)∥2

]
≤4β∆′ +

8βf̄
√

log(2/δ)√
n

+ 4L

√
(ϕ 1

2β
(w1)−minw ϕ(w))β

H
.

(62)

D.3.1. EXPLANATION OF CONVERGENCE BY MOREAU ENVELOP

The gradient bound of Moreau envelop indicates that the algorithm converges to an approximately
stationary point, which is explained as below. The Moreau envelop∇ϕ 1

2β
(wj) satisfies∇ϕ 1

2β
(wj) =

2β · (wj − ŵj). Since the proximal point is ŵj = argminw ϕ(w) + β∥w − wj∥2, we have
∇ϕ(ŵj) + 2β(ŵj − wj) = 0. Thus, it holds that ∇ϕ 1

2β
(wj) = 2β · (wj − ŵj) = ∇ϕ(ŵj)

and ∥ŵj − wj∥ = ∥ 1
2β∇ϕ(ŵj)∥ = 1

2β∥∇ϕ 1
2β
(wj)∥. Therefore, if the gradient of Moreau envelop

is bounded for the decision variable w, i.e. ∥∇ϕ 1
2β
(w)∥ ≤ ∆, its proximal point ŵ is an approx-

imately stationary point for the optimal inner maximization function ϕ (bounded gradient of the
inner maximization function ∥∇ϕ(ŵ)∥ ≤ ∆), and the distance between w and ŵ is close enough:
∥ŵj − wj∥ = 1

2β∥∇ϕ 1
2β
(wj)∥ ≤ ∆

2β . Thus, Algorithm 1 approximately converges.

Appendix E. Details of Experiments

E.1. Experiment Setups

This section reports numerical experiments on a representative ML task—time series forecasting
based on the Electricity Maps [1] datasets —to evaluate the effectiveness of the proposed algorithms.

E.1.1. BASELINES

The baselines which are compared with our algorithms in our experiments are introduced as below.
Standard ML (ML): This method trains the ML to minimize the time series forecasting error

without DRO.
Diffusion-based ML (DML): This is an ML model fine-tuned with diffusion-generated aug-

mented datasets. Compared to D-DRO, DML performs standard training based on the augmented
datasets rather than a distributionally robust training.

Wasserstein-based DRO (W-DRO): In this DRO framework, the ambiguity set is characterized
by the Wasserstein metric. For our experiments, we employ the FWDRO algorithm proposed in
[35], which transforms the inner maximization of W-DRO into an adversarial optimization with a
mixed norm ball and then alternatively solve the adversarial examples and the ML weights.

KL-divergence-based DRO (KL-DRO): In this DRO framework, the ambiguity set is charac-
terized by the KL- divergence. We employ the standard KL-DRO solution derived in [11], which is
commonly adopted in practice.
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E.1.2. DATASETS

The experiments are conducted based on Electricity Maps [1], a widely utilized global platform that
provides high-resolution spatio-temporal data on electricity system operations, including carbon
intensity (gCO2eq/kWh) and energy mix, and is actively employed for carbon-aware scheduling
and carbon footprint estimation in real systems such as data centers [8].

We utilize datasets from Electricity Maps that record hourly electricity carbon intensity over the
period 2021∼2024 across four representative regions: California, United States (BANC 21∼24),
Texas, United States (ERCO 21∼24), Queensland, Australia (QLD 21∼24), and the United King-
dom (GB 21∼24). These datasets capture fine-grained temporal variations in carbon intensity (mea-
sured in gCO2eq/kWh) arising from different energy mixes in diverse geographical and regulatory
contexts, thereby providing a comprehensive benchmark for evaluating carbon-aware forecasting
models. For model training, we construct a dataset by merging BANC 23 and BANC 24, resulting
in 438 sequence samples. Model evaluation is then performed on multiple independent test sets,
each consisting of 312 sequence samples drawn from other years and regions to ensure heteroge-
neous and challenging testing scenarios. To quantify the degree of distributional shift between the
training and test sets, we compute the Wasserstein distance, which provides a principled measure of
discrepancy between probability distributions. The calculated distances are reported alongside the
dataset names in Table 2.

E.1.3. TRAINING SETUPS

The experimental setup is divided into the following parts:
Predictor: The predictors in D-DRO and all the baselines share the same two-layer stacked

LSTM architecture with 128 and 64 hidden neurons.
Diffusion Model: The diffusion model in D-DRO is DDPM [10] which has T = 500 steps in a

forward or a backward process.
Training: For D-DRO, we adopt the PPO-based reformulation in (20) for inner maximiza-

tion. We train the reference DDPM θ0 in (20) based on the original training dataset BANC 2324 (
BANC 23 & BANC 24) and use it to generate an initial dataset z0 to calculate rθ in (20). The sam-
pling variance of DDPM is chosen from a range [0.1, 0.5]. To improve training efficiency, only the
last T ′ = 15 backward steps of the DDPM model are fine-tuned by (20). We choose a slightly higher
clipping parameter κ = 0.4 in (20) to encourage the maximization while maintaining stability. We
choose ϵ = 0.015 as InnerMax’s adversarial budget which gives the best average performance
over all validation datasets. We choose η = 0.01 as the rate to update the Lagrangian parameter α
in Algorithm 1. We use the Adam optimizer with a learning rate of 10−5 for both the diffusion train-
ing in the maximization and the predictor update in minimization. The diffusion model is trained
for 10 inner epochs with a batch size of 64. The predictor is trained for 15 epochs with a batch size
of 64.

For the baseline methods, we choose the same neural network architecture as D-DRO. We care-
fully tuned the hyperparameters of the baseline algorithms to achieve optimal average performance
over all validation datasets. For W-DRO, we consider the Wasserstein distance with respect to
l2−norm and set the adversarial budget as ϵ = 0.3. For KL-DRO, we choose the adversarial budget
ϵ = 4. The predictors in all baseline methods are trained by Adam optimizer with a learning rate of
1× 10−5.
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In terms of training, all baselines and D-DRO are initialized from the same ML model pretrained
for 100 epochs, using a batch size of 64 in both the pretraining and subsequent training phases. For
our method, the outer minimization in DRO is performed for 15 iterations, and each outer iteration
contains 10 inner maximization steps, during which the diffusion model is fine-tuned. After these
10 inner maximization steps, the current diffusion model generates a dataset zθ of the same size as
z0, and the pretrained ML model is then further trained for two epochs on zθ. Consequently, our
algorithm effectively fine-tunes the ML model for 30 rounds in total, while utilizing 15 different
augmented datasets zθ. To ensure a fully fair ablation setup, DML is also fine-tuned for 30 rounds,
but always with the same dataset z0. In contrast, since W-DRO and KL-DRO are not part of the
ablation study, they are trained for 100 epochs to achieve their best performance.

E.2. Main results

Table 2: Test MSE on different datasets.
Datasets

(Wasserstein Distance)
Algorithms

D-DRO KL-DRO W-DRO DML ML

BANC 22 (0.0240) 0.0047 0.0086 0.0073 0.0078 0.0183
BANC 21 (0.1213) 0.0054 0.0112 0.0121 0.0093 0.0238

QLD 24 (0.2171) 0.0450 0.0754 0.0823 0.0766 0.0887
QLD 23 (0.2033) 0.0509 0.0831 0.0879 0.0834 0.0946
QLD 22 (0.2782) 0.0192 0.0379 0.0557 0.0352 0.0667
QLD 21 (0.3054) 0.0186 0.0377 0.0574 0.0339 0.0696

GB 24 (0.0419) 0.0119 0.0178 0.0176 0.0172 0.0285
GB 23 (0.0666) 0.0100 0.0178 0.0200 0.0164 0.0311
GB 22 (0.1255) 0.0105 0.0197 0.0245 0.0172 0.0360
GB 21 (0.1359) 0.0094 0.0181 0.0229 0.0158 0.0340

ERCO 24 (0.1206) 0.0158 0.0241 0.0266 0.0224 0.0379
ERCO 23 (0.1207) 0.0106 0.0179 0.0196 0.0162 0.0319
ERCO 22 (0.1581) 0.0076 0.0146 0.0187 0.0123 0.0312
ERCO 21 (0.1417) 0.0093 0.0189 0.0263 0.0160 0.0382

Average 0.0163 0.0288 0.0342 0.0271 0.0450

Maximum 0.0509 0.0831 0.0879 0.0834 0.0946

We tune the hyperparameters of all
methods based on validation datasets
and present their best performance
in Table 2 where all the datasets are
OOD testing datasets with different
discrepancies.

We can find that all DRO meth-
ods improve the testing performance
for OOD datasets comparing to ML by
optimizing the worst-case expected
loss while DML improves upon ML by
leveraging diffusion-generated aug-
mented datasets. Using the perfor-
mance of ML as the reference, D-DRO
achieves the largest performance gain
of 63.7%, followed by DML with a
39.7% improvement. In contrast,
KL-DRO and W-DRO yield improve-
ments of 36.1% and 24.0%, respec-
tively.

Notably, DML surpasses KL-DRO
by 3.6% only after augmentation training with diffusion-generated datasets, highlighting the sig-
nificant positive impact of diffusion model. Moreover, DML differs from D-DRO only in that it
disables the DRO component, while their training procedures remain identical (see Appendix E for
details). Thus, D-DRO, DML, and ML together form two ablation studies: the performance gap be-
tween D-DRO and DML confirms that DRO contributes a 39.7% performance gain to D-DRO, while
the gap between DML and ML verifies that the diffusion model also provides a 39.7% performance
gain.

Although both DML and the other two DRO deliver noticeable performance gains, D-DRO still
outperforms them by an average margin of 30.4%. The underlying reason may lie in the fact that
D-DRO leverages the distribution learning capability of the diffusion model when constructing the
ambiguity set, enabling the generation of adversarial distributions that are both strong and realistic,
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thereby achieving superior OOD generalization. In contrast, the KL-divergence used in KL-DRO re-
quires all distributions to be absolutely continuous with respect to the training distribution P0, which
constrains the support space of the ambiguity set and limits the search for strong adversaries. Among
the baselines, W-DRO performs the worst, likely due to the fact that solving Wasserstein-based DRO
usually involves optimal transport problems or their relaxations, which are computationally more
demanding and often rely on approximate methods such as dual reformulation or adversarial train-
ing, resulting in suboptimal solutions. Moreover, since W-DRO allows adversarial distributions with
supports different from the training distribution, it is theoretically more flexible and closer to real
distribution shifts, but this flexibility can produce overly extreme adversaries and thus lead to overly
conservative model training.

E.3. More Out-Of-Distribution Tests

E.3.1. EFFECT OF NOISY TYPES

In this test, we add a certain amount of different types of noise into each test set to compare the
noise robustness of different algorithms. The noise types include Gaussian Noise, Perlin Noise, and
Cutout Noise.

Table 3: Gaussian-Corrupted Test.

Dataset
Algorithms

D-DRO KL-DRO W-DRO DML ML

BANC 22 0.0170 0.0197 0.0183 0.0189 0.0291
BANC 21 0.0177 0.0214 0.0216 0.0199 0.0337

QLD 24 0.0560 0.0839 0.0911 0.0847 0.0990
QLD 23 0.0615 0.0925 0.0960 0.0934 0.1034
QLD 22 0.0307 0.0476 0.0639 0.0445 0.0766
QLD 21 0.0297 0.0475 0.0649 0.0431 0.0772

GB 24 0.0238 0.0280 0.0276 0.0279 0.0381
GB 23 0.0221 0.0260 0.0305 0.0269 0.0414
GB 22 0.0227 0.0302 0.0343 0.0279 0.0458
GB 21 0.0211 0.0279 0.0334 0.0256 0.0438

ERCO 24 0.0281 0.0350 0.0369 0.0340 0.0471
ERCO 23 0.0228 0.0281 0.0294 0.0267 0.0418
ERCO 22 0.0206 0.0256 0.0293 0.0230 0.0416
ERCO 21 0.0217 0.0295 0.0357 0.0264 0.0475

Average 0.0282 0.0388 0.0438 0.0373 0.0547

Maximum 0.0615 0.0925 0.0960 0.0934 0.1034

Gaussian Noise: In the Gaussian Noise
test, we add Gaussian Noise with σ = 0.1 to
each test set. As shown in Table 3, all algo-
rithms exhibit performance degradation com-
pared to the noise-free setting. Nevertheless,
D-DRO still significantly outperforms the oth-
ers: taking ML as the reference, our method
achieves a 48.3% improvement, followed by
DML and KL-DRO with gains of 31.7% and
29.15%, respectively. The weakest performer
is W-DRO, which surpasses ML by only 20%.
In fact, W-DRO is relatively adept at handling
Gaussian Noise compared to other noise types,
and thus maintains a noticeable advantage even
under σ = 0.1 Gaussian Noise, a trend further
confirmed in subsequent experiments. On the
other hand, both DML and D-DRO are trained
with diffusion-generated augmented datasets,
which inherently possess noise characteristics
due to the Gaussian-based diffusion process.
As a result, their performance remains robust
under Gaussian Noise perturbations.

Perlin Noise: Perlin Noise is a smooth pseudo-random gradient noise commonly used to simu-
late natural textures such as clouds, terrains, and wood grains. By combining multiple Perlin Noise
components with different frequencies and amplitudes (known as octaves), more complex fractal
noise can be produced. In this experiment, we superimpose 8 layers of Perlin Noise, with the noise
amplitude normalized to the range [-1, 1].
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Table 4: Perlin-Corrupted Test.

Dataset
Algorithms

D-DRO KL-DRO W-DRO DML ML

BANC 22 0.0117 0.0296 0.0620 0.0227 0.0663
BANC 21 0.0110 0.0288 0.0591 0.0211 0.0662

QLD 24 0.0355 0.0636 0.0862 0.0588 0.0928
QLD 23 0.0406 0.0685 0.0787 0.0669 0.0860
QLD 22 0.0186 0.0476 0.0852 0.0341 0.0904
QLD 21 0.0192 0.0475 0.0865 0.0355 0.0940

GB 24 0.0147 0.0272 0.0499 0.0252 0.0563
GB 23 0.0133 0.0295 0.0560 0.0239 0.0628
GB 22 0.0132 0.0311 0.0611 0.0247 0.0666
GB 21 0.0114 0.0311 0.0586 0.0224 0.0677

ERCO 24 0.0154 0.0267 0.0436 0.0238 0.0525
ERCO 23 0.0142 0.0382 0.0767 0.0262 0.0829
ERCO 22 0.0109 0.0324 0.0655 0.0223 0.0732
ERCO 21 0.0104 0.0283 0.0506 0.0194 0.0605

Average 0.0171 0.0379 0.0657 0.0305 0.0727

Maximum 0.0406 0.0685 0.0865 0.0669 0.0940

As shown in Table 4, taking ML as the ref-
erence, our method outperforms ML by 76.4%,
while DML achieves a 58.0% improvement, and
both perform better than in the Gaussian Noise
test. Although KL-DRO also shows a larger
gain relative to ML, its MSE remains roughly
the same as in the Gaussian Noise test; the ap-
parent improvement is primarily due to the sub-
stantial performance drop of ML in this experi-
ment. In contrast, W-DRO outperforms ML by
only 9.6%, a significant decline compared to
its performance under Gaussian Noise, with the
MSE reduced by as much as 50%. This in-
dicates that W-DRO is not well-suited for han-
dling Perlin Noise, likely because the Wasser-
stein distance measures global distributional
transport cost and is more effective in captur-
ing smooth, small perturbations (e.g., Gaussian
Noise), but fails to adequately model the long-
range correlated patterns of Perlin Noise within
the Wasserstein ball.

Table 5: Cutout-Corrupted Test.

Dataset
Algorithms

D-DRO KL-DRO W-DRO DML ML

BANC 22 0.0063 0.0181 0.0297 0.0125 0.0385
BANC 21 0.0095 0.0302 0.0547 0.0192 0.0637

QLD 24 0.0404 0.0798 0.1096 0.0697 0.1148
QLD 23 0.0426 0.0802 0.1028 0.0743 0.1092
QLD 22 0.0196 0.0507 0.0881 0.0384 0.0971
QLD 21 0.0208 0.0534 0.0916 0.0400 0.1005

GB 24 0.0145 0.0351 0.0598 0.0252 0.0688
GB 23 0.0122 0.0343 0.0603 0.0230 0.0681
GB 22 0.0129 0.0361 0.0639 0.0245 0.0720
GB 21 0.0127 0.0356 0.0651 0.0245 0.0740

ERCO 24 0.0157 0.0375 0.0643 0.0275 0.0732
ERCO 23 0.0134 0.0349 0.0599 0.0241 0.0678
ERCO 22 0.0134 0.0349 0.0599 0.0241 0.0678
ERCO 21 0.0116 0.0354 0.0671 0.0225 0.0758

Average 0.0174 0.0425 0.0699 0.0319 0.0782

Maximum 0.0426 0.0802 0.1096 0.0743 0.1148

Cutout Noise: Cutout Noise is a commonly
used perturbation method that randomly selects
a region of the input data and sets its values to
a constant, thereby simulating partial informa-
tion loss. In our experiment, we randomly mask
30% of the sequence and set the masked val-
ues to a constant of 1. As shown in Table 5,
the performance of all algorithms is very close
to their performance under Perlin Noise. We
attribute this to the fact that, although Perlin
and Cutout Noises differ in form, both represent
structured local perturbations that disrupt the
continuity of the input patterns, thereby posing
similar challenges to all algorithms and result-
ing in comparable performance under these two
types of noise at a given perturbation level. This
is further confirmed in the subsequent gradient-
perturbation tests.

E.3.2. EFFECT OF NOISY LEVELS

In this experiment, we progressively increased
the intensity of three types of noise. For Gaus-
sian Noise, the perturbation range is set to σ ∈ [0.05, 0.2]; for Perlin Noise, the amplitude is con-
trolled within the range [0.05, 1]; and for Cutout Noise, the Cutout Mask Ratio is adjusted between
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[10%, 40%]. As shown in Figures 1, 2, 3, D-DRO consistently outperforms all baseline methods
across different noise types and intensity levels. With increasing noise strength, we observe that
variations in Gaussian Noise have a more pronounced impact on all methods compared to Perlin
and Cutout Noise. In contrast, the impact of stronger Perlin and Cutout Noise on D-DRO remains
limited, and even at higher noise levels, D-DRO maintains stable and superior performance, high-
lighting its strong robustness. For W-DRO, however, the performance degradation under Perlin and
Cutout Noise is much greater, with trends almost identical to ML, indicating that W-DRO is not ef-
fective in handling Perlin and Cutout Noise but is relatively better at coping with Gaussian Noise.
Interestingly, when the Cutout Mask Ratio is 30%, the performance of all algorithms is nearly iden-
tical to their performance under Perlin Noise with amplitude 1, suggesting that at specific noise
levels, Perlin and Cutout—though different in form—both represent structured local perturbations
that disrupt input continuity to a similar degree, thereby producing comparable impacts on the al-
gorithms.
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Figure 1: Gaussian perturbation strength
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Figure 2: Perlin perturbation strength
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Figure 3: Cutout perturbation strength
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Figure 4: Effect of budget ϵ in D-DRO
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E.4. Effects of DRO Budget

Finally, we examine the impact of the budget parameter ϵ in (2) on the performance of D-DRO.
As illustrated in Fig. 4, the loss–ϵ curves across all datasets display a concave trend, with the
best average performance achieved around ϵ = 0.015. When ϵ is smaller than this threshold, the
diffusion-modeled distributions are overly restricted to the training data, thereby hindering the abil-
ity of D-DRO to generalize to OOD datasets. In contrast, when ϵ becomes excessively large, the
enlarged ambiguity set causes D-DRO to conservatively optimize against irrelevant distributions,
which degrades its performance on real OOD datasets. Hence, selecting an appropriate value of ϵ
is essential for constructing effective adversarial distributions, ensuring a proper balance between
average-case and worst-case performance.
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